Imaging Informatics for Cell-Based Assays

B. Parvin

Imaging and Informatics
vision.lbl.gov
Lawrence Berkeley National Laboratory
Berkeley, CA 94720

Outline

Motivation

 Managing information (e.g., protein localization, physiological responses) from spatio-temporal data collected through optical microscopy

Issues

— How to acquire, annotate, compute, and organize information for meaningful representation

Approach

- Automated instrumentation, annotation, and online analysis (VSOM)
- Integrated Informatics system for representing data, metadata, and quantitative information (BioSig)

Motivation

- What proteins are being made in the cell (identity)? where are they expressed (location)? when are they active (time)? and what is their function (activity)?
 - Covalent modification
 - Kinetics of interactions
 - Monolayer (2D) or multicellular systems (3D)
- Optimization and screening of synthetic oligos for imaging mRNA
 - Specificity and hybridization efficiency
 - Signal to noise ratio
 - Pharmacokinetics (in and out fluxes)
- Optimization of microenvironment based on physiological responses
 - pH, temperature, reagents
 - Predictive models

Challenges

- Handling large volume of heterogeneous data
 - Standard molecular and cell biology techniques
 - Microscopy
 - Whole animal imaging
- Constructing and accessing complex schema and disparate ontologies
- Building visual routines for quantitative representation
 - Biology is heterogeneous

Challenges: quantitative representation for understanding biological images

Nuclear stain: image is noisy and the stain is not expressed uniformly

Nuclear stain: many internal substructures and overlapping compartments

Nuclear and mitochondrial: Image is noisy, which includes both random and speckled noise (internal substructures), and the stain is not expressed uniformly

Approach

- Automated instrumentation for acquisition and control, on-line analysis, and standardized annotation
 - Close loop servo control
- Web-based architecture to access experimental annotations, data, and computed quantitative representation
 - Multilayer architecture
 - Schema and guided navigation through the database
 - · Living cells and fixed tissue
- Novel algorithms to quantify features of interest using standardized interfaces
 - Quantitative visual routines for 5D datasets

Visual Servoing Optical Microscopy (VSOM)

Applications:

- Assay optimization
- In vitro screening

In vitro screening testbed

VSOM Interface

Static and functional structure

Schema

Schema

Feb. 3rd, 2004

Dynamic user interface for annotating experimental images

- GUI feature
 - Declarative
 - Graphics
- Database
 - Postgress
 - Objectstore
- Data standards/ontologies
 - OME
 - NLM

Navigation through experimental data

Presentation layer

Automated scaling

Raw and processed data

Integrated analysis and browsing of data

Steps in quantitative representation (geometry-based –1)

Original image

EXTRACT ELLIPTIC REGIONS

Detect small substructures

HARMONIC CUTS

Interpolate substructures

CENTROID TRANSFORM

Cluster by geometry

Feb. 3rd, 2004

Steps in quantitative representation (statistical learning)

1.

Nuclear localization

2.

Construct training database punctate events

3.

Use context to assign punctate events to each cell

Applications

- Quantitative representation of 2D and 3D data
 - Cell-cell communication in multicellular systems
- Time-resolved (4D data) responses in living cells
 - Physiological responses
 - mRNA imaging

Characterizing colony formation

Experimental Protocol

Ellipsoidal representation

Normal organization of a colony

Altered organization of colony

Hyperquadric representation

Characterizing cell-cell communication

- Collect training samples for connexin expression
- Use statistics, shape features, and context to detect connexin

One slice of 3d volume at 360 and 480 nm

Computed 3D structure of cultured cells and protein localization

Population studies

Population study indicates that number of gap junctions are reduced as a function of particular treatment (one experiment with ~4 Gbytes of data)

Characterizing physiological fingerprints (CAL-CAM assay)

Kinetic uptake analysis for a single live cell

Kinetic uptakes for two different cell lines

Feb. 3rd, 2004

Query operators for comparative analysis

Plots indicate washout curves for three different cell lines

Size of data being compared:

~400 Mbytes

Feb. 3rd, 2004

Summary/Acknowledgement

- Cell-based assays have the potential to generate large volume of complex heterogeneous data
 - Automated instrumentation and standard ontologies
 - Novel quantitative methods for representation
 - Informatics infrastructure
- Developers
 - G. Fontenay
 - R. Romano
 - Q. Yang
 - B. Parvin
- Credits:

- Collaborators
 - D. Callahan (LBNL)
 - M.H. Barcellos-Hoff (LBNL)
 - D. Sudar (LBNL)
 - M. Nielson-Hamilton (AMES)
 - A. Gifford (BNL)
 - T. TIsty (UCSF)
- Project is funded by Department of Energy Office of Biological and Environment Research
 - Life/Medical Sciences Division